Paper: Effect of oil spills on the bacterial diversity

Acosta-González A, Martirani-Von Abercron SM, Rosselló-Mora R, Wittich RM & Marqués S (2015). The effect of oil spills on the bacterial diversity and catabolic function in coastal sediments: a case study on the Prestige oil spill. Environ Sci Pollut Res, 22:15200-15214. doi: 10.1007/s11356-015-4458-y
Read abstract here.


The accident of the Prestige oil tanker in 2002 contaminated approximately 900 km of the coastline along the northern Spanish shore, as well as parts of Portugal and France coast, with a mixture of heavy crude oil consisting of polycyclic aromatic hydrocarbons, alkanes, asphaltenes and resins. The capacity of the autochthonous bacterial communities to respond to the oil spill was assessed indirectly by determining the hydrocarbon profiles of weathered oil samples collected along the shore, as well as through isotope ratios of seawater-dissolved CO2, and directly by analyses of denaturing gradient gel electrophoresis fingerprints and 16S rRNA gene libraries. Overall, the results evidenced biodegradation of crude oil components mediated by natural bacterial communities, with a bias towards lighter and less substituted compounds. The changes observed in the Proteobacteria, the most abundant phylum in marine sediments, were related to the metabolic profiles of the sediment. The presence of crude oil in the supratidal and intertidal zones increased the abundance of Alpha- and Gammaproteobacteria, dominated by the groups Sphingomonadaceae, Rhodobacteraceae and Chromatiales, whilst Gamma- and Deltaproteobacteria were more relevant in subtidal zones. The phylum Actinobacteria, and particularly the genus Rhodococcus, was a key player in the microbial response to the spill, especially in the degradation of the alkane fraction. The addition of inorganic fertilizers enhanced total biodegradation rates, suggesting that, in these environments, nutrients were insufficient to support significant growth after the huge increase in carbon sources, as evidenced in other spills. The presence of bacterial communities able to respond to a massive oil input in this area was consistent with the important history of pollution of the region by crude oil.

See all publications